Biological materials: Structure and mechanical properties

نویسندگان

  • Marc André Meyers
  • Po-Yu Chen
  • Albert Yu-Min Lin
  • Yasuaki Seki
چکیده

Most natural (or biological) materials are complex composites whose mechanical properties are often outstanding, considering the weak constituents from which they are assembled. These complex structures, which have risen from hundreds of million years of evolution, are inspiring Materials Scientists in the design of novel materials. Their defining characteristics, hierarchy, multifunctionality, and self-healing capability, are illustrated. Self-organization is also a fundamental feature of many biological materials and the manner by which the structures are assembled from the molecular level up. The basic building blocks are described, starting with the 20 amino acids and proceeding to polypeptides, polysaccharides, and polypeptides–saccharides. These, on their turn, compose the basic proteins, which are the primary constituents of ‘soft tissues’ and are also present in most biominerals. There are over 1000 proteins, and we describe only the principal ones, with emphasis on collagen, chitin, keratin, and elastin. The ‘hard’ phases are primarily strengthened by minerals, which nucleate and grow in a biomediated environment that determines the size, shape and distribution of individual crystals. The most important mineral phases are discussed: hydroxyapatite, silica, and aragonite. Using the classification of Wegst and Ashby, the principal mechanical characteristics and structures of biological ceramics, polymer composites, elastomers, and cellular materials are presented. Selected systems in each class are described with emphasis on the relationship between their structure and mechanical response. A fifth class is added to this: functional biological materials, which have a structure developed for a specific function: adhesion, optical properties, etc. An outgrowth of this effort is the search for bioinspired materials and structures. Traditional approaches focus on design methodologies of biological materials using conventional synthetic 0079-6425/$ see front matter 2007 Elsevier Ltd. All rights reserved. doi:10.1016/j.pmatsci.2007.05.002 * Corresponding author. E-mail address: [email protected] (M.A. Meyers). Available online at www.sciencedirect.com Progress in Materials Science 53 (2008) 1–206 www.elsevier.com/locate/pmatsci materials. The new frontiers reside in the synthesis of bioinspired materials through processes that are characteristic of biological systems; these involve nanoscale self-assembly of the components and the development of hierarchical structures. Although this approach is still in its infancy, it will eventually lead to a plethora of new materials systems as we elucidate the fundamental mechanisms of growth and the structure of biological systems. 2007 Elsevier Ltd. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A study on the sub-structure and mechanical properties of friction stir processed AA 6061-T6 joints with ultra-fine grained structure

Ultra-fine grained (UFG) structure (~0.6 µm) was produced in the stir zone (SZ) of 6061-T6 aluminum alloy joints using friction stir processing (FSP) cooled by liquid nitrogen (N2). A new experimental set-up was used to simultaneously quench the lower and upper surfaces of the samples during the processing. In addition, FSPed joints, using a steel backing plate, were produced at room temperatur...

متن کامل

Evaluation of Mechanical Properties of Polyethylene‌‌ Glycol/ Dextrane Methacrylate / Maleic Acid Copolymer as a Biological Scaffold

Abstract Introduction: The use of membranes and transplant materials as scaffolds in periodontal regenerative surgeries is gaining an increasing application for restoring the structure and function of lost tissues. The present study aimed to evaluate the mechanical properties of PEG/MA (Polyethylene glycol/Maleic Acid) copolymer as a bioscaffold. Metho...

متن کامل

Preparation and characterization of hydroxyapatite reinforced with hardystonite as a novel bio-nanocomposite for tissue engineering

Objecttive(s): Despite the poor mechanical properties of hydroxyapatite, its unique biological properties leads we think about study on improving its properties rather than completely replacing it with other biomaterials. Accordingly, in this study we introduced hydroxyapatite reinforced with hardystonite as a novel bio-nanocompositeand evaluate its in-vitro bioactivity with the aim of developi...

متن کامل

Fabrication and Structural, Mechanical, and Biological Characterization of Vancomycin-Loaded Chitosan-Hydroxyapatite-Gelatin Beads for Local Treatment of Osteomyelitis

 Background and purpose: Topical antibiotic medication is an alternative method in treatment of local infections, especially osteomyelitis. Currently several biomaterials are used for this purpose. The present study focused on the fabrication and characterization of chitosan and Vancomycin (VCM)-loaded chitosan (CS)-hydroxyapatite (HA)-gelatin (G) bead in treatment of osteomyelitis. Materials ...

متن کامل

Microstructural Evolution and Mechanical Properties of Ultrafine/nano Structured AISI 321 Stainless Steel Produced by Thermo-mechanical Processing

The mechanical properties and microstructural developments of 321 stainless steel during thermomechanical process were investigated. The repetitive cold rolling and subsequent annealing were conducted to achieve nanocrystalline structure in an AISI 321 stainless steel. Heavily cold rolling at −20°C was conducted to form martensite in metastable austenitic steel. The process was followed by anne...

متن کامل

Silk cocoon (Bombyx mori): multi-layer structure and mechanical properties.

Bombyx mori cocoon is a natural composite made of silk fibre with a distinctive multi-layer structure that provides mechanical protection for its biological functions. Here we investigate the components, structure and mechanical properties of cocoon layers, and quantify the contributions of the multi-layer structure to the mechanical properties of cocoon. A better understanding of the multi-lay...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010